29 research outputs found

    Fine-grained bit-flip protection for relaxation methods

    Full text link
    [EN] Resilience is considered a challenging under-addressed issue that the high performance computing community (HPC) will have to face in order to produce reliable Exascale systems by the beginning of the next decade. As part of a push toward a resilient HPC ecosystem, in this paper we propose an error-resilient iterative solver for sparse linear systems based on stationary component-wise relaxation methods. Starting from a plain implementation of the Jacobi iteration, our approach introduces a low-cost component-wise technique that detects bit-flips, rejecting some component updates, and turning the initial synchronized solver into an asynchronous iteration. Our experimental study with sparse incomplete factorizations from a collection of real-world applications, and a practical GPU implementation, exposes the convergence delay incurred by the fault-tolerant implementation and its practical performance.This material is based upon work supported in part by the U.S. Department of Energy (Award Number DE-SC-0010042) and NVIDIA. E. S. Quintana-Orti was supported by project CICYT TIN2014-53495-R of MINECO and FEDER.Anzt, H.; Dongarra, J.; Quintana Ortí, ES. (2019). Fine-grained bit-flip protection for relaxation methods. Journal of Computational Science. 36:1-11. https://doi.org/10.1016/j.jocs.2016.11.013S11136Chow, E., & Patel, A. (2015). Fine-Grained Parallel Incomplete LU Factorization. SIAM Journal on Scientific Computing, 37(2), C169-C193. doi:10.1137/140968896Karpuzcu, U. R., Kim, N. S., & Torrellas, J. (2013). Coping with Parametric Variation at Near-Threshold Voltages. IEEE Micro, 33(4), 6-14. doi:10.1109/mm.2013.71Bronevetsky, G., & de Supinski, B. (2008). Soft error vulnerability of iterative linear algebra methods. Proceedings of the 22nd annual international conference on Supercomputing - ICS ’08. doi:10.1145/1375527.1375552Sao, P., & Vuduc, R. (2013). Self-stabilizing iterative solvers. Proceedings of the Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems - ScalA ’13. doi:10.1145/2530268.2530272Calhoun, J., Snir, M., Olson, L., & Garzaran, M. (2015). Understanding the Propagation of Error Due to a Silent Data Corruption in a Sparse Matrix Vector Multiply. 2015 IEEE International Conference on Cluster Computing. doi:10.1109/cluster.2015.101Chazan, D., & Miranker, W. (1969). Chaotic relaxation. Linear Algebra and its Applications, 2(2), 199-222. doi:10.1016/0024-3795(69)90028-7Frommer, A., & Szyld, D. B. (2000). On asynchronous iterations. Journal of Computational and Applied Mathematics, 123(1-2), 201-216. doi:10.1016/s0377-0427(00)00409-xDuff, I. S., & Meurant, G. A. (1989). The effect of ordering on preconditioned conjugate gradients. BIT, 29(4), 635-657. doi:10.1007/bf01932738Aliaga, J. I., Barreda, M., Dolz, M. F., Martín, A. F., Mayo, R., & Quintana-Ortí, E. S. (2014). Assessing the impact of the CPU power-saving modes on the task-parallel solution of sparse linear systems. Cluster Computing, 17(4), 1335-1348. doi:10.1007/s10586-014-0402-

    Babesia spp. in ticks and wildlife in different habitat types of Slovakia

    Get PDF
    Background: Babesiosis is an emerging and potentially zoonotic disease caused by tick-borne piroplasmids of the Babesia genus. New genetic variants of piroplasmids with unknown associations to vectors and hosts are recognized. Data on the occurrence of Babesia spp. in ticks and wildlife widen the knowledge on the geographical distribution and circulation of piroplasmids in natural foci. Questing and rodent-attached ticks, rodents, and birds were screened for the presence of Babesia-specific DNA using molecular methods. Spatial and temporal differences of Babesia spp. prevalence in ticks and rodents from two contrasting habitats of Slovakia with sympatric occurrence of Ixodes ricinus and Haemaphysalis concinna ticks and co-infections of Candidatus N. mikurensis and Anaplasma phagocytophilum were investigated. Results: Babesia spp. were detected in 1.5 % and 6.6 % of questing I. ricinus and H. concinna, respectively. Prevalence of Babesia-infected I. ricinus was higher in a natural than an urban/suburban habitat. Phylogenetic analysis showed that Babesia spp. from I. ricinus clustered with Babesia microti, Babesia venatorum, Babesia canis, Babesia capreoli/Babesia divergens, and Babesia odocoilei. Babesia spp. amplified from H. concinna segregated into two monophyletic clades, designated Babesia sp. 1 (Eurasia) and Babesia sp. 2 (Eurasia), each of which represents a yet undescribed novel species. The prevalence of infection in rodents (with Apodemus flavicollis and Myodes glareolus prevailing) with B. microti was 1.3 % in an urban/suburban and 4.2 % in a natural habitat. The majority of infected rodents (81.3 %) were positive for spleen and blood and the remaining for lungs and/or skin. Rodent-attached I. ricinus (accounting for 96.3 %) and H. concinna were infected with B. microti, B. venatorum, B. capreoli/B. divergens, Babesia sp. 1 (Eurasia), and Babesia sp. 2 (Eurasia). All B. microti and B. venatorum isolates were identical to known zoonotic strains from Europe. Less than 1.0 % of Babesia-positive ticks and rodents carried Candidatus N. mikurensis or A. phagocytophilum.Inst. de PatobiologíaFil: Hamsikova, Zuzana. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Kazimirová, Mária. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Harustiakova, Danka. Masaryk University. Faculty of Medicine and Faculty of Science, Institute of Biostatistics and Analyses; República ChecaFil: Mahrikova, Lenka. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Slovak, Mirko. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Berthova, Lenka. Slovak Academy of Sciences. Biomedical Research Center. Institute of Virology; EslovaquiaFil: Kocianova, Elena. Slovak Academy of Sciences. Biomedical Research Center. Institute of Virology; EslovaquiaFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Evolutionary origins of human handedness : evaluating contrasting hypotheses

    Get PDF
    Variation in methods and measures, resulting in past dispute over the existence of population handedness in nonhuman great apes, has impeded progress into the origins of human right-handedness and how it relates to the human hallmark of language. Pooling evidence from behavioral studies, neuroimaging and neuroanatomy, we evaluate data on manual and cerebral laterality in humans and other apes engaged in a range of manipulative tasks and in gestural communication. A simplistic human/animal partition is no longer tenable, and we review four (nonexclusive) possible drivers for the origin of population-level right-handedness: skilled manipulative activity, as in tool use; communicative gestures; organizational complexity of action, in particular hierarchical structure; and the role of intentionality in goal-directed action. Fully testing these hypotheses will require developmental and evolutionary evidence as well as modern neuroimaging data.Publisher PDFPeer reviewe
    corecore